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Gas chromatographic (GC) profiles of cuticular hydrocarbon extracts obtained from individual and pooled
ant samples were analyzed using pattern recognition techniques. Clustering according to the biological
variables of social caste and colony were observed. Pooling individual extracts enhanced the recognition
of patterns in the GC profile data characteristic of colony. Evidently, the contribution of the ant’s individual
pattern to the overall hydrocarbon profile pattern can obscure information about colony in the GC traces
hemical communication
lassification
ocial insects

of cuticular hydrocarbon extracts obtained from red fire ants. Re-analysis of temporal caste and time
period data on the cuticular hydrocarbon patterns demonstrates that sampling time and social caste
must be taken into account to avoid unnecessary variability and possible confounding. This and the
fact that foragers could not be separated from reserves and brood-tenders in all five laboratory colonies
studied suggests that cuticular hydrocarbons as a class of sociochemicals cannot model every facet of
nestmate recognition in Solenopsis invicta which in turn suggests a potential role for other compounds in

n con
the discrimination of alie

. Introduction

Cuticular hydrocarbons serve several purposes in insects, such
s prevention of desiccation and regulation of cuticular permeabil-
ty [1]. In addition, this class of chemically inert compounds can
ave semiochemical functions, such as alarm, recruitment, defense,
ex attractants, and host attractants [2]. There is also evidence
o suggest a supporting role for cuticular hydrocarbons in social
nsect nestmate recognition [3,4], which is defined as the abil-
ty of a worker to discriminate nestmates from alien conspecifics.
estmate recognition is a well documented phenomenon in the
ajority of social insect species [5]. In social Hymenoptera (ants,

ees, and wasps) nestmate recognition cues are thought to be
hemical signals [6].

It is generally accepted that nestmate recognition in ants and

ther social insects involves the detection of specific cues on the
uticle [7]. Both environmental and/or heritable compounds can
ontribute to nestmate recognition. Heritable nestmate recognition
ues are biosynthesized under genetic control, whereas environ-
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mental cues are derived from food, nest material, and anything
else with which individual social insects come into contact. In addi-
tion, recognition cues may be derived from genetic–environment
interactions.

Although there is no direct evident for the role of cuticular
hydrocarbons in the nestmate recognition of Solenopsis invicta (red
imported fire ants), cuticular hydrocarbons have been used as
a model to study the quantitative variation in heritable compo-
nents of colony odor [8,9]. Indirect, correlative evidence regarding
a potential role for cuticular hydrocarbons in nestmate recognition
of S. invicta came from a study of a myrmecophilous beetle [10]. The
beetle had been reported to co-habit nests of four Solenopsis species,
without the ants recognizing them as intruders. It was determined
experimentally that the beetle acquired the species-specific cutic-
ular hydrocarbons of its original host, S. richteri. After the beetles
were removed from the S. richteri colony, they lost the hydrocar-
bon pattern of the host species. On transfer to S. invicta colonies,
the surviving beetles had acquired the hydrocarbon patterns of the
new host species, S. invicta. Although the mechanism of the hydro-
carbon transfer is unknown, it is obvious that acquisition of host
hydrocarbons is correlated with the acceptance of the beetles into
fire ant colonies.
For S. invicta, cuticular hydrocarbons represent only one genet-
ically controlled chemical class of compounds that contributes to
colony odor, and thus far have only been shown to be correlated to
nestmate recognition. If cuticular hydrocarbons of S. invicta play an
important role in nestmate recognition, there must be significant
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ig. 1. Gas chromatographic trace of cuticular hydrocarbons from S. invicta.
he compounds eluting off the capillary column were identified and quan-
ified by GC/MS: (a) heptacosane, (b) 13-methylheptacosane, (c) 13,15-
imethylheptacosane, (d) 3-methylheptacosane, and (e) 3,9-dimethylheptacosane.
exacosane was added for quantitation as an internal standard (IS).

ariation in the hydrocarbon pattern from one colony to another.
he combination of gas chromatography and pattern recognition
nalysis has been used to study the relationship between cuticu-
ar hydrocarbon patterns obtained from pooled ant samples in S.
nvicta workers as a function of developmental changes, e.g., tem-
oral social castes, colony of origin, and time Here we explore
he use of a variety of multivariate analysis methods to separate
hree temporal (age dependent) social castes (foragers, reserves,
nd broods) and to visualize colony cuticular hydrocarbon changes
hat occur over time. The dynamic nature of these heritable char-
cters in relationship to nestmate recognition confirms previous
tudies (3), and is briefly discussed. The focus of this report is on the
ata analysis techniques used to identify the fingerprint patterns

n the GC data characteristic of temporal social caste and colony of
rigin for S. invicta.

. Experimental

For this study, 125 individuals and 235 pooled ant samples
ere obtained from laboratory colonies maintained at the USDA-
RS Fire Ant Project Laboratory in Gainesville, FL. Ants from each
olony were fed with sugar–water (1:1) and crickets. Three tem-
oral worker categories were represented in the data: foragers,
eserves, and brood tenders. Brood tenders were identified by dis-
urbing a colony and observing the workers that were carrying
roods. When disturbing a colony, workers that remained within
he colony (mound) structure and were not near the broods were
eserves. The very first workers that came to food baits setup near
he mound were the foragers. Brood tenders, reserves, and foragers
re part of a temporal caste system. As the workers age, they transi-
ion from brood tenders to reserves and finally to foragers. Further
etails about age polymorphism in S. invicta can be found elsewhere
11].

Cuticular hydrocarbons were obtained by soaking individual or
ooled ant samples for at least 10 min at room temperature in
nough hexane (with n-C26H56 added for quantitation as an inter-
al standard) to just cover them. After the rinses were complete,
he soaks were processed using an Agilent 6890N Network Gas
hromatograph System (Palo, Alto, CA). The Agilent System was
quipped with a split–splitless injector, a flame ionization detec-
or, and a DB-1 fused silica capillary column (30 m, 0.25 mm id,
.25 �m film thickness, J&W Scientific Inc., Folsom, CA). The injec-
or and detector were set at 300 ◦C, and the oven temperature was

rogrammed from 150 ◦C to 285 ◦C at 10◦/min and then held at
85 ◦C for 4 min. Hydrogen was used as the carrier gas and nitro-
en was used as the makeup gas. The chromatographic data (see
ig. 1) were processed using Agilent Technologies GC Chemstation
3 (2011) 1308–1316 1309

G2071AA A.10.01 (Agilent Technologies, Palo Alto). Peak retention
times were compared to standard cuticular hydrocarbons from S.
invicta. If there was ambiguity in a peak assignment, then mass
spectra were obtained on an Agilent 5973 Network Mass Selective
Detector US10480853 using Agilent 6890N Network Gas Chro-
matography System US10124023. For the GC/MS runs, the injector
was set at 300 ◦C and the oven temperature was programmed from
100 ◦C to 285 ◦C at 10◦/min, and then held at 285 ◦C for 10 min with
the transfer line set at 285 ◦C. Helium was used as the carrier gas
for the column. GC/MS data were processed using Agilent Enhanced
GC/MS Chemstation software G1701DA version D.00.00.38.

2.1. Pattern recognition methodology

For pattern recognition analysis, each gas chromatogram was
translated into a data vector X = (x1, x2, x3, x4, x5) using as descrip-
tors the mass (expressed in nanograms) of each major hydrocarbon
component as determined by the internal standard (C26H54). Each
gas chromatogram was normalized to the weight of the corre-
sponding ant sample. Expressing each peak in nanograms and
normalizing the GC data to weight of the ant sample provided
more information about colony of origin, time period, and social
caste than using the area of each GC peak as a descriptor because
inclusion of the internal standard facilitated removal of information
about sample size from the data.

The GC data were analyzed using the Advanced Data Analy-
sis and Pattern Recognition Toolkit (ADAPT) which was written
in MATLAB 7.6.0.324(R2008a) using the graphical user interface
development environment (GUIDE). The toolkit consists of a col-
lection of MATLAB M-files and MATLAB Figure files that control the
GUI’s computational and graphical components. The M-file pro-
vides both a code to initialize the GUI and a framework for the GUI
routines that execute in response to user-generated events. The
main GUI module is a MATLAB M-file called ADAPTv5.M. Invoking
this file opens up the main GUI which has menus to perform dif-
ferent tasks and graphical objects like fields and buttons to display
information related to a particular dataset and the results of various
pattern recognition analysis performed on the data set.

The GUI area is divided into two fields: one for training and
the other for prediction. All the training set information is dis-
played in the training field whereas the prediction set information
is displayed in the prediction field. The information displayed in
each field includes the name of the dataset file loaded, number of
features in the data set, type of data preprocessing done, and the
pattern recognition analysis method used. Each field also displays
the number of samples and the number of misclassified samples
in each class. The sample id number and true class membership of
each misclassified sample is also displayed as well as the fitted or
predicted class membership value.

The four main types of pattern recognition methods are mapping
and display, discriminant development, clustering, and model-
ing. ADAPT has routines in all four areas and most were used in
this study. ADAPT has routines to perform principal component
analysis, canonical varaiate analysis, hierarchical clustering, FCV
clustering, variance and Fisher weights (for feature selection in
classification), linear discriminant analysis, quadratic discriminant
analysis, regularized discriminant analysis, K-NN, and back prop-
agation neural networks with one or two hidden layers using the
Levenberg Marquardt algorithm or adaptive learning with momen-
tum. Bootstrapped and cross-validated error rates can be computed
for each trained model. A description of the various pattern recogni-
tion routines that comprise ADAPT can be found elsewhere [12–14].
3. Results and discussion

Several questions have been addressed in this study using a
variety of pattern recognition methods. First, is there an advan-
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ig. 2. (a) Comparison of the classification scores for the pooled ant samples versu
ny degree of separability due to chance for the pooled ant samples with RDA (0.8,

age to analyze the cuticular hydrocarbon extracts of pooled versus
ndividual ant samples? Second, is the cuticular hydrocarbon pat-
erns of S. invicta workers correlated with their age-linked temporal
aste? Third, do the hydrocarbon profiles of S. invicta significantly
iffer for each laboratory colony? And fourth, can the same methods
sed to distinguish colony of origin be used to track colony cutic-
lar hydrocarbon changes over time? Previous studies [15–20,9]
erformed in our laboratories on differences in cuticular hydro-
arbon profiles for carpenter ants and for Cataglyphis niger have
hown separation by colony, and temporal caste. For S. invicta, it
as been previously reported, albeit in a preliminary study, that
uticular hydrocarbon patterns are consistent within colonies for
given sampling time, but they vary sufficiently from colony to

olony. The cuticular hydrocarbon profiles of S. invicta colonies
lso change over time [21–23]. In these studies, the results were
eported on a subset of the data collected and/or the multivariate
ethods used were limited in their ability to extract information

rom the cuticular hydrocarbon profiles. Furthermore, there was
o attempt to deconvolve the confounding effects of the biolog-

cal variables investigated. For these reasons, a more exhaustive
nvestigation of the biological variables that influence the cuticular
ydrocarbon profiles of S. invicta was undertaken.

During the course of this study, the cuticular hydrocarbon data

ere investigated for curvilinear relationships among the five mea-

urement variables through analysis of pair wise plots of these
easurement variables which revealed only linear relationships.

his would suggest that a linear pattern recognition methodol-
gy would be sufficient for analysis of this data. Nevertheless,

ig. 3. (a) Comparison of the classification scores for the individual ant samples versus the
ny degree of separability due to chance for the pooled ant samples with LDA, and QDA.
verage degree of separation in the data due to chance. (b) Probability of achieving
A, and QDA.

self-organizing maps and back propagation neural networks were
applied to the data. However, classification results obtained with
so-called nonlinear methods were inferior to those obtained using
linear methods and linear models, e.g., linear and quadratic dis-
criminant analysis, canonical variates, and principal component
analysis.

3.1. Pooled versus individual ant samples

To answer the first question, gas chromatograms of cuticular
hydrocarbon extracts obtained from 65 pooled, reserve ant samples
from five laboratory colonies were collected and analyzed using
linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and regularized discriminant analysis (RDA). The goal was
to separate one colony from another. The results of this study are
summarized in Fig. 2a.

Because there was no validation set, Monte Carlo simulation
studies were performed to assess the statistical significance of
the classification scores. The goal was to estimate the separation
in the data due to chance using LDA, QDA, and RDA. For these
studies, data sets comprised of random numbers were generated.
Both Gaussian and uniform distributions were employed. A method
described in previous publications [24,25] was used to compute the

expected level of chance classification for both the pooled and indi-
vidual ant samples. For each chance classification study, 100 data
sets consisting of random numbers were generated. The statistical
properties of the simulated data (i.e., dimensionality, number of
samples, class membership distribution, and covariance structure)

average degree of separation in the data due to chance. (b) Probability of achieving
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Fig. 4. A plot of the two largest principal components of the 170 pooled red fire
ant samples and the five high molecular weight hydrocarbon compounds that char-
B.K. Lavine et al. / Tal

ere identical to the actual data for which we wish to determine
ts degree of classification due to chance. For each random data set,
ts degree of separability was assessed. The number of occurrences
f several degrees of separation (e.g., at least 70% of the patterns
ere correctly classified or at least 80% of the patterns were cor-

ectly classified) was noted and the fraction of the total number of
ccurrences (cumulative probability) for each degree of separation
as plotted against the percentage of patterns correctly classified.

hese cumulative distribution curves provide information about
he likelihood that a particular classification result is due to chance.
or example, if the classification score obtained for real data is 80%
ut the mean classification success rate for the simulated data is
nly 37% and the probability of achieving 65% correct classifica-
ion due to chance is zero (see Fig. 2b), the score obtained using
he real data (80%, see Fig. 2a) would be considered statistically
ignificant.

Results from these Monte Carlo simulation studies are summa-
ized in Fig. 2a and b. For the QDA classification study involving
he pooled ant samples (see Fig. 2b), 100 data sets consisting of
andom numbers were generated. The statistical properties of the
imulated data (i.e., dimensionality, number of samples, class mem-
ership distribution, and covariance structure) were identical to
hose of the 65 pooled ant samples. The separabililty of each ran-
om data set was assessed using QDA and a cumulative probability
lot was generated for the random data. The mean classification
core of the 100 random data sets was also computed and compared
o the classification score obtained in the QDA study for the GC data.
ince the mean classification success rate of the simulated data was
nly 57.3%, the classification score obtained for QDA using GC data
xpressed in nanograms was judged to be statistically significant
see Fig. 2b).

Fig. 3a summarizes the results obtained for 125 individual ant
amples collected from the same laboratory colonies as the pooled
nt samples. Each colony is represented by 25 reserve workers.
ig. 3a and b summarizes the results of the chance classification
tudies for this data. Results for RDA were not reported because
he values of � and � that gave the best classification for colony
ere 0, 0 which corresponds to QDA.

For the pooled ant samples, there were 65 independent sam-
les equally distributed among five classes. For the individual ants,
here were 125 independent samples distributed equally among
ve classes. As the number of objects in a data set increases, the
egree of separation due to chance will decrease. For this reason,
hance classifications are lower for the individual ants than for the
ooled ant samples.

An examination of Figs. 2 and 3 reveals that differences between
he classification-success rates obtained for real data versus ran-
om data are smaller for the individual ant samples. This suggests
hat pooling the samples enhances the recognition of patterns
ndicative of colony in the cuticular hydrocarbon profiles of S.
nvicta when pattern recognition techniques are used to analyze the
ata. Evidently, the contribution of the ant’s individual pattern to
he overall hydrocarbon profile pattern obscures information about
olony of origin in GC traces obtained from cuticular hydrocar-
on extracts. For these reasons, we strongly suggest that cuticular
ydrocarbon profiles from pooled ant samples, not individual ant
amples be studied to seek meaningful relationships between cutic-
lar hydrocarbon profiles and biological variables such as colony of
rigin and temporal (social) caste.

.2. Social caste
To address the question about patterns in the hydrocarbon
rofiles indicative of temporal caste, it was necessary to collect
dditional data. A set of 170 gas chromatograms of cuticular hydro-
arbon extracts were obtained from 170 S. invicta samples. Each
acterize the cuticle of S. invicta. Each ant sample is represented as a point in the
principal component map of the data. 1 is a pooled ant sample from colony 1; 2 is
a pooled ant sampled from colony 2; 3 is a pooled ant sample from colony 3; 4 is a
pooled ant sample from colony 4; 5 is a pooled ant sample from colony 5.

ant sample contains hydrocarbons extracted with hexane from
the cuticle of 100 individual ants. The ant samples were obtained
from five laboratory colonies (which were not the same laboratory
colonies used in the pooled versus individual ant sample study),
three temporal castes (foragers, reserves, and brood tenders), and
the colonies were sampled at four different time periods (three in
the spring and summer, and one in the winter).

The first step was to analyze the data using principal compo-
nent analysis (PCA). This technique can be summarized as a method
for transforming the original measurement variables into new,
uncorrelated variables called principal components. Each principal
component is a linear combination of the original measurement
variables. Using this procedure is analogous to finding a set of
orthogonal axes that represent the directions of largest variance
in the data. PCA can furnish information about trends present in a
data set.

Fig. 4 is a plot of the two largest principal components of the 170
pooled S. invicta samples and the five GC peaks that characterize
each sample. Each pooled ant sample is represented as a point in the
principal component map of the data. It is evident from the plot that
sample 31 (colony 1) is an outlier, and this sample was subsequently
deleted from the analysis because of the adverse effect that outliers
can have on the performance of pattern recognition methods.

For each laboratory colony, the data were divided into three
categories according to temporal caste. Previous analyses of the
cuticular hydrocarbons [22,23] using PCA to analyze the GC pro-
files of the hydrocarbon soaks revealed patterns indicative of the
temporal caste of the S. invicta samples in only one of the five lab-
oratory colonies investigated. Therefore, canonical variate analysis
(CVA) was performed to separate the pooled ant samples in each
colony by temporal caste. The results of this study are summarized
in Figs. 5–9. Each pooled ant sample is represented as a point in the
CVA map of the data. Foragers, which are represented by the symbol
1, could be readily differentiated from brood tenders (represented
by the symbol 2) and reserves (represented by the symbol 3) in four
of the five laboratory colonies (colonies 1, 2, 4, and 5) investigated.
Because reserves can assume the role of brood tenders, it is plau-
sible that both reserves and the brood tenders could have similar
hydrocarbon profiles.
Fig. 10 shows a CVA plot of the GC data from colonies 1, 2, 4, and
5. The data were divided into three classes according to social caste.
Again, separation of the foragers from the reserves and brood ten-
ders is evident. When social caste is investigated on a per colony
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Fig. 5. A plot of the two largest canonical variates of the pooled ant samples obtained
from colony 1. Each pooled ant sample is represented as a point in the CVA map of
the data. 1 is a pooled forager ant sample; 2 is a pooled reserve ant sample; and 3
is a pooled brood tender ant sample. Separation of the foragers from brood tenders
and reserves in the plot is evident.

Fig. 6. A plot of the two largest canonical variates of the pooled ant samples obtained
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Fig. 8. A plot of the two largest canonical variates of the pooled ant samples obtained
from colony 4. Each pooled ant sample is represented as a point in the CVA map of
the data. 1 is a pooled forager ant sample; 2 is a pooled brood tender ant sample;
and 3 is a pooled reserve ant sample. Separation of the foragers from brood tenders
and reserves in the plot is evident.

Fig. 9. A plot of the two largest canonical variates of the pooled ant samples obtained

Figs. 5–9 versus Fig. 10) confirm that patterns correlated to tem-
rom colony 2. Each pooled ant sample is represented as a point in the CVA map of
he data. 1 is a pooled forager ant sample; 2 is a pooled brood tender ant sample;
nd 3 is a pooled reserve ant sample. Separation of the foragers from brood tenders
nd reserves in the plot is evident.

asis, separation of the foragers from the reserves and the brood

enders occurred on the first canonical variate. Upon investigating
ocial caste as the class variable using GC data from colonies 1, 2, 4,
nd 5, separation of the foragers from the reserves and brood ten-
ers occurred on the second canonical variate. These results (see

ig. 7. A plot of the two largest canonical variates of the pooled ant samples obtained
rom colony 3. Each pooled ant sample is represented as a point in the CVA map of
he data. 1 is a pooled forager ant sample; 2 is a pooled brood tender ant sample;
nd 3 is a pooled reserve ant sample. Clustering of the pooled ant samples on the
asis of social caste is not observed in this plot.
from colony 5. Each pooled ant sample is represented as a point in the CVA map of
the data. 1 is a pooled forager ant sample; 2 is a pooled brood tender ant sample;
and 3 is a pooled reserve ant sample. Separation of the foragers from brood tenders
and reserves in the plot is evident.
poral caste are present in the cuticular hydrocarbon profiles of S.
invicta, but are not the major source of variation in the hydrocarbon
profiles obtained from pooled ant samples.

Fig. 10. A plot of the two largest canonical variates of the pooled ant samples
obtained from all five colonies. Each pooled ant sample is represented as a point
in the CVA map of the data. 1 is a pooled forager ant sample; 2 is a pooled brood
tender ant sample; and 3 is a pooled reserve ant sample. Separation of the foragers
from the brood tenders and reserves in the plot is evident.
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Fig. 11. A plot of the three largest canonical variates of the pooled ant samples
obtained from colony 1. Each pooled ant sample is represented as a point in the
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Fig. 13. A plot of the three largest canonical variates of the pooled ant samples
obtained from colony 2. Each pooled ant sample is represented as a point in the

to be characteristic of the individual colony. For each time period,
the data were divided into five categories according to the colony
VA map of the data. 1 is a pooled ant sample from time period 1; 2 is a pooled ant
ample from time period 2; 3 is a pooled ant sample from time period 3; and 4 is a
ooled ant sample from time period 4. Clustering of the pooled ant samples by time
eriod is evident in this plot.

.3. Time period

For each colony, the data were divided into four categories
ccording to the time period of sampling. CVA was performed to
eparate pooled ant samples in each colony by time period. Monte
arlo simulation experiments were also performed in tandem to
ssess the degree of separation in the data due to chance. One
undred data sets comprised of random numbers with Gaussian
istributions that had statistical properties (i.e. dimensionality,
umber of samples, class membership distribution, and covariance
tructure) identical to those of the real data were generated. CVA
as performed on a data set that was an average of the 100 random
ata sets generated. The results are summarized in Figs. 11–20. It

s evident from the Monte Carlo simulation experiments that sep-
ration of the pooled ant samples by time period in the CVA plots
annot be attributed to chance.
Each laboratory colony exhibited a different pattern of change
ith time. In our previous studies [22,23], we were able to deter-
ine that S. inivcta cuticular hydrocarbon profiles from time period

our were different from the cuticular hydrocarbon profiles of the

ig. 12. A plot of the three largest canonical variates of the simulated data sets for
olony 1. Clustering of the pooled ant samples by time period is not evident in this
lot.
CVA map of the data. 1 is a pooled ant sample from time period 1; 2 is a pooled ant
sample from time period 2; 3 is a pooled ant sample from time period 3; and 4 is a
pooled ant sample from time period 4. Clustering of the pooled ant samples by time
period is evident in this plot.

other time periods and that only one laboratory colony exhibited
a systematic change in its their cuticular hydrocarbon profile over
time. The results obtained in the present study indicate that cuticu-
lar hydrocarbon profiles of each S. invicta colony change with time.
However, the pattern of change as shown in each CVA plot is dif-
ferent for each colony. In some instances, all of the time periods are
well separated whereas in other instances only two of the four time
periods are well separated. This should not come as a surprise for
the cuticular hydrocarbon profiles of S. invicta may be a dynamic
system that undergoes changes with time and the nature of this
change will be different for each colony.

3.4. Laboratory colony

The cuticular hydrocarbon profiles of S. invicta were also found
of origin of the pooled ant samples. Again, decision surfaces were
developed from the five major hydrocarbon components. QDA was
used to classify the data by colony for each time period. Monte

Fig. 14. A plot of the three largest canonical variates of the simulated data sets for
colony 2. Clustering of the pooled ant samples by time period is not evident in this
plot.



1314 B.K. Lavine et al. / Talanta 83 (2011) 1308–1316

Fig. 15. A plot of the three largest canonical variates of the pooled ant samples
obtained from colony 3. Each pooled ant sample is represented as a point in the
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Fig. 17. A plot of the three largest canonical variates of the pooled ant samples
obtained from colony 4. Each pooled ant sample is represented as a point in the
VA map of the data. 1 is a pooled ant sample from time period 1; 2 is a pooled ant

ample from time period 2; 3 is a pooled ant sample from time period 3; and 4 is a
ooled ant sample from time period 4. Clustering of the pooled ant samples by time
eriod is evident in this plot.

arlo simulation studies were also performed to assess the degree
f separation in the data due to chance. The results of these stud-
es are summarized in Fig. 21. Clearly, the cuticular hydrocarbon
rofiles of the red fire ants are characteristic of the colony of origin
or a given time period. However, it was surprising that our Monte
arlo simulations revealed high chance classification success rates

or the case of 45 samples distributed equally among four classes
ith each sample characterized by five measurements using QDA.
hance classification may be a more serious problem with QDA
han was previously thought.

QDA was also used to classify the data by colony across all time
eriods. The results of this study are summarized in Fig. 22. To
ssess the significance of these classifications, Monte Carlo sim-
lation studies were performed. The results of these studies are
ummarized in Figs. 22 and 23. Differences in chance classifica-
ion across all time periods versus individual time periods were
ue to the larger number of samples involved in colony classifi-

ation across all time periods. Using the Monte Carlo simulation
tudies as a benchmark, it is evident that classifications obtained
n the quadratic discriminant analysis study across all time periods
re significant for four of the five laboratory colonies. When the

ig. 16. A plot of the three largest canonical variates of the simulated data sets for
olony 3. Clustering of the pooled ant samples by time period is not evident in this
lot.
CVA map of the data. 1 is a pooled ant sample from time period 1; 2 is a pooled ant
sample from time period 2; 3 is a pooled ant sample from time period 3; and 4 is a
pooled ant sample from time period 4. Clustering of the pooled ant samples by time
period is evident in this plot.

classifications for colony from each time period (see Fig. 21) are
compared to the classifications for colony across all time periods
(see Fig. 22), it is evident that cuticular hydrocarbon profiles of S.
invicta change with time, which can confound the classification of
GC profile data by colony using pattern recognition techniques. This
is most evident in the cuticular hydrocarbon profiles of pooled sam-
ples of S. invicta from colonies 4 and 5. The changes in the cuticular
hydrocarbon profiles that occurred in laboratory colonies 4 and 5
over time caused their cuticular hydrocarbon profiles to overlap.
For example, cuticular hydrocarbon profiles from colony 5 at time
period 1 were similar to those of colony 4 at time period 3.

We have previously reported [22,23] that four of five labora-
tory colonies could be differentiated on the basis of their cuticular
hydrocarbon profiles. These studies were carried out by formu-
lating the problem as a series of binary classifications using the
linear learning machine and related linear nonparametric methods

of classification. In the current study, better multivariate anal-
ysis methods have been used and the analysis of the cuticular
hydrocarbon data was more detailed in its scope. From the current
study, we have learned that all five colonies could be separated on

Fig. 18. A plot of the three largest canonical variates of the simulated data sets for
colony 4. Clustering of the pooled ant samples by time period is not evident in this
plot.
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Fig. 19. A plot of the three largest canonical variates of the pooled ant samples
obtained from colony 5. Each pooled ant sample is represented as a point in the
CVA map of the data. 1 is a pooled ant sample from time period 1; 2 is a pooled ant
sample from time period 2; 3 is a pooled ant sample from time period 3; and 4 is a
pooled ant sample from time period 4. Clustering of the pooled ant samples by time
period is evident in this plot.

Fig. 20. A plot of the three largest canonical variates of the simulated data sets for
colony 5. Clustering of the pooled ant samples by time period is not evident in this
plot.

Fig. 22. A comparison of the classification scores for colony across all time periods
versus the degree of separation in the data due to chance.

Fig. 21. A comparison of the classification scores for colony versus the degree of separati
3, and (d) time period 4.
Fig. 23. Probability of achieving any degree of separation in the data due to chance
for all five laboratory colonies using QDA. There is a 50% probability of achieving a
classification score of 40.1%.
the basis of their cuticular hydrocarbon profiles when data from
each time period is analyzed separately. When colonies are ana-
lyzed using data from all of the time periods, the classifications
become confounded which considerably strengthens the previ-

on in the data due to chance at (a) time period 1, (b) time period 2, (c) time period
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usly stated conclusion that cuticular hydrocarbon profiles of red
re ants change over time.

. Conclusions

The GC traces representing ant cuticle extracts can be related
o colony of origin and temporal caste. These results support a
orrelative role for cuticular hydrocarbons in nestmate recogni-
ion. However, it remains for specific behavioral bioassays with
urified hydrocarbons to determine if cuticular hydrocarbons are

n fact used by S. invicta in nestmate recognition. In addition,
he re-analysis of temporal caste and time on cuticular hydrocar-
on patterns demonstrates that sampling time and social caste
ust be taken into account to avoid unnecessary variability and

ossible confounding. This and the fact that foragers could not
e separated from reserves and brood-tenders in all five labo-
atory colonies suggests that cuticular hydrocarbons as a class
f compounds cannot model every facet of nestmate recogni-
ion in S. invicta which in turn suggests a potential role for other
ompounds in the discrimination of alien conspecifics from nest-
ates.
It is truly remarkable that all of this information (social caste,

olony of origin, and time period) is contained in the concentration
attern of five high molecular weight hydrocarbons which com-
rise a dynamic system that changes with time with the nature
f these changes being different for each colony. Neither colony of
rigin, social caste, nor time period is the major source of variation
n the data although distinct patterns in the concentration profiles
f the five hydrocarbons characteristic of these biological variables
an be identified.

This study also demonstrates the importance of using pat-
ern recognition methods to analyze complex chromatographic
ata sets and to seek meaningful relations between chemical con-
titution and biological variables. The classification of complex
iological samples on the basis of their GC profiles can be com-
licated by two factors: (1) confounding of the desired group

nformation by other systematic variations present in the data and
2) random or chance classification effects. The existence of these
omplicating relationships is an inherent part of fingerprint type
ata.

Many of the pattern recognition methods used in this study

elied heavily on graphics for the presentation of results. It is the
pinion of the authors that multivariate analysis techniques should
e used to extend the ability of human pattern recognition. This
llows the user to directly interpret the meaning of the underlying
elationships present in data.
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